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Non-linear conductance of a saddle-point constriction 

L Martin-Moreno, J T Nicholls, N K Patel and M Pepper 
Cavendish Iaboratoq, Madingley Road, Cambridge CB3 OHE, UK 

Received 13 November 1991 

A L s W i  We present calculations of the differential eonduclanE, G, of a eonslriclion, 
defined by a saddle-point potential in a huodimensional electron gas, in the non-linear 
regime of uanspn as a function of Fermi energy, source-drain voltage and magnetic 
field. ?he manner in which lhe potential is dropped along the device is considered 
phenomenologically, The dependence of G on the parameters that define the potential 
dmp is inwsligated, extending the model proposed by Glazman and Khaeukii. A method 
for measuring the sub-band energies and spin-splilting energies in a bottle-neck of the 
constridion is alsn proposed. Finally, a comparison between experimental data and 
theoretical calculations is presenkd. 

1. Introduction 

A few years ago, the conductance of a quantum point contact (QPC) defined by 
applying a negative voltage to a split-gate over the two-dimensional electron gas 
(ZDEG) formed at a GaAs-AIGaAs heterojunction [1,2] was found to be quantized 
[3,4] in multiples of 2 e z / h .  The constriction was short enough for the electrons to 
cross it ballistically. Although most of the experimental and theoretical studies on 
such devices have concentrated on the linear regime of transport, [SI the non-linear 
regime has also received some attention, and can be divided into two limits: (i) when 
the potential difference due to the source-drain voltage eV, is larger than the Fermi 
energy EF, and (U) when eV,, is comparable to the sub-band energy spacings A E. 
For the case when eV, > & it is predicted [6] that as V,, is increased a QPC should 
show negative differential resistance, due to a saturation of the number of carriers 
and a decrease of the transmission probabilities through the constriction. Hints of 
instabilities in the conductance associated with negative differential resistance have 
been observed in some experiments 171, but not in others [8,9]. For the case when 
eV, c AE,  the theoretical calculations are more complicated than those in the 
linear response regime because the current and the electrostatic potential have to be 
calculated self-consistently for each value of the source-drain voltage. Self-consistent 
calculations are difficult even for a simple 2D system and, in the simulation of real 
devices, there is the additional complication of the presence of gates. 

?b date, all theoretical studies on the non-linear differential conductance of QPCs 
have made assumptions about how the potential difference due to the source-drain 
voltage is dropped along the device. Glazman and Khaetskii (GK) assumed [lo] that 
half of the source-drain voltage is dropped between the contacts and the ‘bottle-neck’ 
of the constriction. For constrictions whose width varies very slowly (adiabatic con- 
strictions), GK predicted [lo] new plateaux in the differential conductance for V,, # 0 
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(called ‘half-plateaux’), appearing midway between the plateaux observed at V, = 0. 
If the sourcedrain voltage is dropped linearly along the constriction, calculations of 
the differential conductance G = d I / d  V, of a constriction defined by abrupt changes 
in the geometry (the wide-narrow-wide model) do not show half-plateaux [11,12]. 
Instead, the calculations (11,12] show a smearing of the conductance plateaux and 
a disappearance of the strueture on top of the plateaux (length resonances) that is 
characteristic of these wide-narrow-wide models [13,14]. Bagwell and Orlando [U], 
while addressing the importance of self-consistency, did not attempt to include it 
in their calculation of the non-linear conductance of a quantum-point contact and 
therefore found a smearing of the zero-bias plateaux but no half-plateaux. 

Kouwenhaven et a1 [SI studied experimentally the I-V, characteristics of a 
quantum-point contact with a small number of occupied conducting sub-bands. Half- 
plateaux were not observed in their device, but the onset of non-linearities in the 
I-V, curves could be explained by a model similar to that proposed by GK. Kouwen- 
hoven et a1 [SI estimated that half of the source-drain voltage is dropped between 
the source and the bottle-neck of the constriction when the differential conductance 
is over 2 e z / h ,  but only 20% is dropped when G is smaller than 2 e 2 / h ,  implying that 
the measured fraction of the voltage dropped at the narrowest point of the device 
is not a universal quantity. Experiments by Patel et a1 [9] clearly showed the half- 
plateaux in the differential conductance, appearing approximately midway between 
the integer plateaux for G 2 2 e z / h .  For G < 2ez /h ,  no half-plateau was found; 
instead, structure was observed [9] at G ss 0 .2 (2e2 /h ) .  Although the appearance of 
half-plateaux could be caused by spin splitting induced by the electric field [16], this 
possibility has becn ruled out by recent experiments [17,18] that show a splitting of 
the half-plateaux under an applied magnetic field, proving that the voltage-induced 
half-plateaux originate from spin-degenerate sub-bands. 

For special values of the gate voltage the non-linear characteristics of a quantum 
point contact have been used [8,9] to obtain the sub-band energy spacings in the 
bottle-neck of the constriction. In such experiments it is not necessary to scale 
the gate voltage in t e r m  of the sub-band energy, in contrast to earlier, less direct 
methods, where the depopulation of the sub-bands in a perpendicular magnetic field 
was fitted to theoretical models [19,20]. Recently, a method for obtaining the sub- 
band spacings for arbitrary gate voltage has been proposed [21,22]. In this method, 
one exploits the relation of the sub-band spacing to the length in s o u r d r a i n  voltage 
of the half-plateaux, that is, to the source-drain voltages needed, firstly, to produce 
a half-plateau and, secondly, to return from a half-plateau to an integer plateau. 

The rest of this paper is organized as follows. In section 2, previous theoretical 
studies arc briefly reviewed and extended by considering more general ways in which 
the source-drain voltage is dropped across a split-gate device. Calculations of the 
differential conductance for a saddle-point constriction are presented in section 3, 
and the theoretical calculations and the experimental data are compared in section 
4. Conclusions are given in section 5. 

2. Adiabatic constriction 

Before discussing the differential conductance as a funetion of source-drain voltage 
for the saddle-point constriction, it is convenient to consider first a simplified model 
[10,23] that shows clearly the effects of an applied source-drain voltage Kd. In this 
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model the constriction in the ZDEG is defined by hard walls, with a width that varies 
very slowly (adiabatically). In adiabatic constrictions the intermode scattering can 
be neglected [23], and the transport through such a system is equivalent to a set of 
strictly one-dimensional (1D) problems of transport through a bamer, one for each 
incident mode. At V, = 0, the maximum of the nth 1~ barrier E,, (the barrier for 
the electrons coming from the nth transverse mode in the wide region that acts as a 
source reservoir) is the nth energy eigenvalue of the confining potential in the bottle- 
neck of the constriction. For finite V,, the maximum energy of the nth 1~ barrier 
depends on how the applied sourcedrain voltage is dropped along the device, and 
is labelled as E,,(V,). Because the barriers are smooth, the transmission probability 
through the nth 1D barrier is well approximated [10,23] by the dassical expression 
T'(E,V,) = Q(E- En(V,)), where Q(z) = 1 for z > 0 and O(z )  = 0 for 
2 < 0. 

Assuming that transport is still ballistic for finite V,, the zero-temperature Lan- 
dauer formula [5,24] for the current in the linear response regime can be extended 
to finite V,, and is given by 

For the cases considered in this paper, eV, < EF, and the differential conductance 
G is given by 

If the voltage dropped at the bottle-neck of the constriction is linear in V,,, the 
E,,(V,) = E, - PeV,,, and (2)  predicts that new plateaux will be introduced by Yd.  
Equation (2) then simplifies to 

G = ( 2 e 2 / h ) { P N + f ( l - P ) N _ }  (3) 

where Nt is the sub-band number such that E,, < EF + @el{, < EN+t1, and N- 
is the sub-band number such that E,_ < EF - ( 1  - P)eVd < E,-t1. Equation 
(3) predicts new plateaux in the differential conductance at values of G = ( N  + 
P)2e2/h ,  (N+2P)2ez /h ,  (N+3P)2e2/h , .  . ., where N is an integer, depending on 
whether the numbers of conducting sub-bands in the forward and backward directions 
differ by 1,2,3 and so-on, respectively. 

The physical origin of the half-plateaux can be more clearly seen if we use an 
energy reference frame in which the sub-band energies E,, remain constant as a 
function of V,,. In this reference frame, when a voltage difference is applied, the 
electrochemical potential at the source reservoir is plS = Ep + pey , ,  and the elec- 
trochemical potential at the drain reservoir is pd = EF - ( 1  - P)eK,. The total 
current, I, is due to electrons in the energy interval between pd and pa, whereas the 
differential conductance is related to electrons with energies close to the source and 
drain electrochemical potentials. Therefore, the differential conductance at finite V,, 
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is a weighted average of two zero-V, conductances (see (3)), one for a Fermi energy 
of EF + PeV,, and the other for a Fermi energy of EF - ( 1  - P)eV,. When the 
number of occupied sub-bands is different for these two ‘Fermi energies’, the average 
differential conductance is not necessarily an integer multiple of 2ez /h .  

GK calculated [lo] that, in adiabatic constrictions, p ES $ when there is a large 
number of occupied sub-bands. Experimentally it has been found [8,9] that p FZ 4 
even for a small number of occupied conducting sub-bands, except when only the 
forward direction is populated (when G < 2ez/h) .  However, a consideration of more 
generaf dependences of the voltage dropped at the bottleneck of the constriction is 
of interest for the case of highly asymmetric constrictions. 

From the G(V,) traces at fixed Fermi energy it is possible to obtain the sub- 
band energy spacings. Consider the Fermi energy to be somewhere between E, 
and E,,,+,. If the sourcedrain voltage is increased, the conductance remains on 
the same plateau until either the electrochemical potential at the source reservoir ps 
becomes equal to ENtl(Vd),  or the electrochemical potential at the drain reservoir 
pd becomes equal to EN( Vd). At such a point the differential conductance switches 
to a value ( N  + P)2ea/h or ( N  - (1 - p))2e2/h ,  respectively. For the case where 
the differential conductance switches to ( N  + P)2e2/h, when ps = EN+,(Vd),  we 
label the sourcedrain voltage at which this change occurs as VI .  The value of VI 
can be found as a maximum in dG/dV,, at which 

On increasing the sourcedrain voltage further, dG/dV,, should reach a minimum 
at a voltage V, given by 

EF + PeV, = E,+,.  (4) 

E F - ( l - P ) e V 2 = E N .  (5) 

(6) 

Subtracting (5) from (4), we obtain the sub-band energy spacing 

For different combinations of maxima and minima we obtain (defining VI as the 
sourcedrain voltage of the first extremum in dG/dV,, and V, as the second ex- 
tremum), 

if VI corresponds to a minimum and V, to a maximum; 

- EN = e[V2(1 - P )  + PVl] .  

E ~ + l - E ~ = e [ i ’ l ( l  - P ) + P V , ]  (7) 

E,+, -ENt, = P4V2 - V, )  (8) 

E,  - E,-, = (1 - P)e(V2 - V, )  (9) 

if VI corresponds to a maximum and V, to a maximum; and 

if \< corresponds to a minimum and V, to a minimum. 
If more than two extrema occur in the dC/dVd curves as a function of V,,, 

additional sub-band spacings can easily be determined. If p = $, (6) and (7) reduce 
to the result derived by Zagoskin [XI. 

In the adiabatic model we require that e y d  < EF and that the transport remains 
ballistic for the range of ICd considered; however we have not specified the nature of 
the 1D sub-bands in the bottle-neck. In a high magnetic field the energies E, are the 
minima of the spin-split ID sub-bands and the method described above can be used 
to measure the Zeeman energy, 2 g p B S B ,  and hence the g-factor in the bottleneck 
of the constriction can be measured [18]. 
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3. The saddle-point potential 

A model that includes tunnelling and quantum reflection of the electrons at the 
constriction is needed in order to explain more quantitatively the experimental data. 
The saddle-point potential [25) is such a model, and can be regarded as neglecting all 
but the linear and quadratic terms in the ’bylor expansion of the electrostatic potential 
near the bottleneck of the constriction. If the transport is globally adiabatic [26], it 
is the bottle-neck that determines the transport properties of the QPC. 

We consider a constriction formed by a saddle-point potential in two dimensions. 
We assume that, as a function of V,, the shape of the saddle-point potential does not 
change, but the electrostatic potential energy in the saddle point U,( V,) is a function 
of V,. Including the Zeeman energy, the potential energy close to the bottle-neck of 
the constriction is 

U ( r , y )  = U,(%,) + +m*w:y2 - + m * w $ 2 & g p B S B  (10) 

where m* is the electron effective mass, g is the Land6 g-factor (which, for simplicity, 
we assume to be isotropic), S = is the electron spin, B is the magnetic field, wy 
and w2 are parameters that define the shape of the saddle, and 2‘ and y are the 
coordinates in the plane. 

The transmission probability through this potential can be calculated analytically, 
even in the presence of a perpendicular magnetic field [27]. The current I( V,) and 
the differential conductance G(V,,) can be calculated using ( 1 )  and (Z), and G is 
given by 

where 

9,s = (1 t dUo(%d)/d(eb))  

x e x p [ ( E F n  + g p B S B ) / E I ]  (1 +.XP[(EF,, + s/LBss)/EJJ-’ 

X 11 fexP[(EFn-e%d+SII~SB)/E1]}-l (12) 

- (duO(vsd)/d(eyd)) exp[(EFn + 5’pBsB)/El] 

= EF - U,( & ) - (n t $) E2 (13) 

(14) 

(15) 

wc = eB,/m‘ (16) 

E, = (h/27r&) { [(wf + w i  - 
E2 = ( h / G  ([(wf + U; - w y  + 4w,wy] 2 2 112 + (wZ + w; - w : ) ) ’ / 2  

+ 4w2wy] 2 2 1 1 2 -  (U: + w: - w ; ) } 1 / 2  

and B, is the component of the magnetic field perpendicular to the ZDEG. 
We shall calculate the differential conductance for different values of the various 

parameters. All the calculations presented in this paper use the ratio w,/w, = 2, 
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(EF-uO)!(hwx) (EF-UOYO~WJ 
Figure 1. (U)  The differential conduclancc vmus the Fermi energy ER - UQ at zero 
magnetic Beid for a m saddle-point constriaion, wilh DC soundra in  voltages varying 
from 0 (leh trace) U) Z.Shw, (right lrace) in incremenu of O.Shw,. The paramcler 
wJw= is faken to be 2, and the potential energy in the saddle point is assumed IO 
depend linearly on the sourcedrain voltage as Uo(V,) = UQ - I/ZeV+ For clarity, 
successive traces are shifted laterally by Zhw,. (b) As in (a), but in Ihe presence of a 
perpendicular magnetic field corresponding to a cyclotron frequency ws = 2w,. The 
spin-splitting energy is neglected. 

a value that best agrees with the shape of the G( V,) traces of good-quality devices 

lb produce half-plateaux, we shall consider first the case U,( Kd) = U,-1 / 2eVd ,  
where U ,  is the elcctrcstatic potential in the saddle point at Vd = 0. Figure l(a) 
shows the differential conductance as a function of the Fermi energy for different 
values of LL, from \L = 0 (left trace) to V,, = 2.5tW, (right trace), in sour- 
drain voltage increments of 0.5hw,. For clarity, successive traces have been shifted 
laterally by 2hw,. The left trace (V, = 0) shows the usual conductance plateaux at 
integer multiples of 2 e z / h .  As V, is increased the integer plateaux become shorter 
while new structure develops in the conductance at half-integer values of 2e2/h;  these 
arc the half-plateaux. In figure l (a) ,  the integer plateaux disappear approximately 
when the half-plateaux appear, as found experimentally 19,221. This is a consequence 
of the range of parameters considered: if 6E is the energy range over which the 
transmission probability vanes from 0 to 1, and A E is the energy difference between 
the bottoms of consecutive sub-bands (in this model A E  does not depend on the 
sub-band index), then integer plateaux are expected when AE-6E > eyd ,  and half- 
plateaux are expected when 6E < eV,. In zero magnetic field, where A E  = hw, 
and 6E e hw,, the calculations in figure l ( a )  show that integer plateaux and half- 
plateaux do not coexist for w /w, = 2. However, if E, # 0, the sub-band energy 
spacing increases, the transmssion probability versus energy becomes sharper [%I, 
(that is A E  > hw, and 6E < hw,), and the curves in figure l(b) show that integer 
plateaux and half-plateaux can coexist for some range of sourcedrain voltages. 

Figure 2 shows the differential conductance, G, plotted as a function of V,,, 
for different values of the Fermi energy EF - U,. For some ranges of EF, the 
conductance remains approximately constant, and if G were plotted versus E, - U. 

[221. 
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D=0.4 

eV,/(hoJ eVsdKbox, 
Figure 2. Thc differential conduclance versus Figure 3. nie same parameters as in figure 2, 
sourcbdrain vallagc V, (in units of hw,) for a 
ZD saddle-pin1 constrinion. Each trace is calcu- 
laled for a Gxed value of EF - U0 thal diffcs by 
(?32)hw, behveen consecutive trace. The values 
w U / w . = 2 , U o ( V ~ ) = U o - ; e V ~ a n d  B = O  
were used in the calculation. 

except Cor Uo(V,) = CJo - 0.4e&. 

curves similar to those in figure I(Q) would be obtained. Figure 2 shows clearly the 
conductance oscillating between integer and half-integer multiples of 2 e z / h ,  as the 
electrochemical potentials on the left and right reservoirs align with the sub-band 
energies, as predicted in the previous section for p = f. If a different confining 
potential were considered, it would be necessaly to rescale the V,, axis, but othewise 
the results would be qualitatively similar to those shown in figure 2. 

The effect of an asymmetric voltage drop on the differential conductance of a 
QPC as a function of source-drain voltage is shown in figure 3, where = 0.4, 
and all other parameters are the same as those used in figure 2. When the source- 
drain voltage is of the order of the sub-band energy spacing el: ,  w hwg = 2h,, 
figure 3 shows plateaux appearing at G / ( 2 e z / h )  = 0.4,1.4,2.4,. . . and plateaux 
at G / ( 2 e 2 / h )  = 0 . 4 , 0 . 8 , 1 . 8 , 2 . 8 . .  . when V, w Zhw, = 4hw,, in agreement with 

A magnetic field parallel to the ZDEG shifts the bottom of the energy suh-bands by 
the Zeeman term *gp ,SB.  The lifting of the spin degeneracy gives rise to conduc- 
tance plateaux at integer multiples of e 2 / h .  These extra plateaux are independent of 
the \;,-induced half-plateaux and, therefore, in a high parallel magnetic field and in 
high V, ‘quarter-plateaux’ are observed at multiples of e 2 / 2 h .  Figure 4(a) shows the 
effect of a parallel magnetic field on the conductance versus I<, curves, for a value of 
2 g p B S B  = 0.8fWz. A value of p = $ was used, as in figures 1 and 2 Although the 
traces in an applied parallel magnetic field (see figure 4(a)) are qualitatively different 
to the traces for zero magnetic field (see figure 2), the quarter-plateaux are not well 
resolved in figure 4(a). To make the quarter-plateaux more distinct we can use either 
a larger value of the parallel magnetic field, or a tilted magnetic field. Figure 4(b) 
shows the results for the same set of parameters as in figure 4(n), using a tilted mag- 

(3). 
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ev&~wJ eVd/(nwJ 
Flgum 4. (a) The diKerential conductance m u s  source-drain voltage for a ZD saddle- 
point constriction. Each trace is calculated for a lixed value of EF - UQ that diKers 
by (SDZ)hw, between consecutive tracer. ?he valuep wu/w= = 2 and UQ(V,,) = 
U, - f e V 4  are the Same as those used in figure 2, acep t  that here the Zeeman energy 
is laken to be 2gpBSB = 0.8Fw,. (b) As in (a) but with a tilted magnetic Reld such 
that the cyclotron frequency wc = 2w,. 

eVsd(W) 
Flgum 5. 'Ihe differential conductance versus source-drain Mltage for a U) Saddle- 
point constriction, showing the eKect of a non-linear drop of the potential between 
the source and the bottle-neck of the constriction. For the case shown Uo(V,d) = 
Uo-keVd+-feVz/2 .  Eachtacciscalculated [ora Iixedvalueof EF-UQ that diffen 
by (SD2)hw. between consecutive tracer. The valuer wu/w, = 2, Y = O.OSe/hw, and 
B = 0 were used in the calculation. 

netic field with a perpendicular component corresponding to a cyclotron frequency 
of w, = 2w,. Due to the increased sharpness of the transmission probability caused 
by B,, quarter-plateaux can be clearly seen for finite V,, at conductance values of 
G / ( 2 e z / h )  = 1.25, 1.75,225, and 2.15. 

The effect of a non-linear voltage drop between the source and the bottle-neck of 



Non-linear conductance of a saddle-point constriction 1331 

the constriction can be modelled by adding a quadratic term to the dependence of the 
electrostatic potential at the bottle-neck on the source-drain voltage. The potential 
then becomes U,,(V,) = U,, - PeV, + yeyi/2. Figure 5 shows calculations of 
G(&) with the same parameters as figure 2, and including the extra term y = 
O.OSe/trw,. The half-plateaux now drift to higher values of conductance (or lower 
values if y is negative) as a function of yd. If y were larger or, more generally, if the 
departures from linearity of U,( were significant, then the half-plateaux would 
not appear. 

4. Comparison behveen theory and experiment 

In this section we present the comparison between the measured G(Vd) for several 
values of the gate voltage, and the calculated G( V,) oC a saddle-point constriction 
for several values of the Fermi energy EF - U,. 

Applying a negative voltage to the split gate of a QPC changes both the average 
electrostatic potential near the constriction (the term U,, in (IO)) and the width and 
length of the constriction, represented by wy and w2, respectively, (see (10)). In 
order to compare experiment and theory, it is necessary to know the dependence of 
the potential at the bottle-neck on the gate voltage. We shall assume that the change 
of the gate voltage V is linearly related to the change in the electrostatic potential 
at the saddle point 8,. This approximation should be valid for small variations of 
gate voltage. 

Vsd(mv) V d m v )  
Figure 6. (a) The experimental differential conductance as a function of source-drain 
voltage for different gate voltages at B = 0. (b) The calculated differenlial conduclance 
as a function of source-drain Mltage for a saddle-point constriction, using B = 0, 
U n ( V , , ) = U n - f ~ V , ~ + 0 . O 2 5 ( e V ~ ) * , h w , = 2 m e V , a n d  h w , = l  meVEachtrace 
is calculated for ked value of EF - Uo, which differs by 0.125 meV belween consecutive 
traca. 

Figure 6 shows the comparison between the experimental differential conductance 
data taken at T = 40 mK for a standard split-gate device, with characteristics pre- 
sented elsewhere [22], and the theoretical curves obtained from (11)-(16). From the 



1332 L Martin-Moreno et ai 

shape of the experimental traces of G( VJ taken at V,, = 0 we obtain [U] the value 
of the ratio w y / w ,  = 2. From the bunching of the experimental curves in figure 
6(a)  at V, = k 2  mV about a conductance value of G FJ 1 .5 (2eZ/h) ,  we obtain 
Zhw, = 2 meV and p = $. The small overall positive slope of the experimental 
G(V,) could be due to a non-linear dependence of the potential, U,,(&), on the 
source-drain voltage, that can be modelled by a small and positive y (see figure 5). 
For the calculations shown in figure 6(6) we have used a value y /e  = 0.05 meV-', 
giving a potential energy at the saddle point Lr,(V,) = U,, -0.5eV,+0.025(eVd)2, 
where Kd is expressed in mV. For the range of conductances shown, there is good 
agreement between the experimental results and the calculations, in support of the 
model in which approximately half the potential is dropped between the contacts and 
the bottle-neck of the constriction. 

The comparison between experiment and theory for high magnetic fields is of 
interest because the g-factors of the quasi-lo electron gas can be extracted, and has 
been presented elsewhere [17,18]. 

It is important to note that there are two regimes where the experimental G(V,) 
data cannot be explained by the CK model or the saddle-point potential model: 

(i) when & > 4 mV the conductance traces decrease smoothly [22], indicating 
a transition to the non-ballistic regime where the model discussed here is no longer 
applicable. In analogy with the experiments on metal point-contacts 1281 structure 
observed in I(\<d) for \$ > 4 mV has been associated 1291 with the phonon density 
of states. 

(ii) For G < 2 e 2 / h ,  the experimental data shows structure [22] that is qualita- 
tively different from the structure for G > 2 e 2 / h .  

5. Conclusions 

We have studied the non-linear differential conductance G( I$) of a system of inde- 
pendent electrons at zero temperature in a ZDEG, where the potential energy of the 
constriction is defined by the saddlc-point model. We have presented results for G 
as a function of Fermi energy, source-drain voltage V,, parallel and perpendicular 
magnetic fields, and the way in which the potential is dropped across the device. 
When the potential at the bottle-neck of the constriction is linear in V,, additional 
quantization appears in the G( EF) curves when the source-drain voltage causes the 
number of conducting sub-bands in the forward and backward directions of transport 
to d a e r  by one. The additional plateaux can be split further by a magnetic field, 
giving rise to quantization of the conductance in units of e 2 / 2 h  (for devices in which 
half of the voltage Yd is dropped between the source and the bottle-neck of the 
constriction). The use of tilted magnetic fields would help the experimental detection 
of these e z / 2 h  conductance plateaux. 

The method of measuring the sub-band energy spacings proposed by Zagoskin 
[21] has been extended to more general forms of voltage drops that may be relevant 
for highly asymmetric devices. 

Finally, we have made a comparison between the experimental data and theoret- 
ical calculations of the conductance as a function of source-drain voltage The 
good agreement obtained for G > 2 e z / h  shows that, for a quantum point contact 
device that is nominally symmetric, half of the voltage \L is dropped between the 
source and the bottle-neck of the constriction. 
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